Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639097

RESUMO

Iridium-catalyzed dearomative allylation/acyl transfer rearrangement has been developed using easily available 2-pyridinyl benzoates and vinyl ethylene carbonate. This protocol enabled the expedient synthesis of a variety of chiral N-substituted 2-pyridones in good to high yields with excellent enantioselectivity. It has the advantages of high atom economy, wide substrate scope, gram-scale synthesis, and versatile synthetic transformations.

2.
Neurosurg Rev ; 47(1): 140, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578529

RESUMO

In recent years, nonsteroidal anti-inflammatory drug (NSAIDs), which are considered to affect the prognosis of spinal surgery, have been widely used in perioperative analgesia in spinal surgery, but the relationship between these two factors remains unclear. The purpose of this study was to explore the effect of perioperative use of NSAIDs on the prognosis of patients treated with spinal surgery. We systematically searched PubMed, Embase, and Cochrane Library for relevant articles published on or before July 14, 2023. We used a random-effect model for the meta-analysis to calculate the standardized mean difference (SMD) with a 95% confidence interval (CI). Sensitivity analyses were conducted to analyze stability. A total of 23 randomized clinical trials including 1457 participants met the inclusion criteria. Meta-analysis showed that NSAIDs were significantly associated with postoperative morphine use (mg) (SMD = -0.90, 95% CI -1.12 to -0.68) and postoperative pain (SMD = -0.71, 95% CI -0.85 to -0.58). These results were further confirmed by the trim-and-fill procedure and leave-one-out sensitivity analyses. The current study shows that perioperative use of NSAIDs appears to be an important factor in reducing postoperative pain and morphine use in patients undergoing spinal surgery. However, well-designed, high-quality randomized controlled trials (RCTs) are still required.


Assuntos
Anti-Inflamatórios não Esteroides , Dor Pós-Operatória , Coluna Vertebral , Humanos , Anti-Inflamatórios não Esteroides/uso terapêutico , Derivados da Morfina/uso terapêutico , Dor Pós-Operatória/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Coluna Vertebral/cirurgia
3.
Sep Purif Technol ; 3202023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303990

RESUMO

A nanocomposite membrane incorporating reactive Pd-Fe nanoparticles (NPs) was developed to remediate chlorinated aliphatic hydrocarbons (CAHs) from groundwater. Other than recapturing the produced Fen+ for in-situ regeneration, the functionalized polyanions prevented NPs agglomeration and resulting in a spherical Fe0 core (55 nm, O/Fe = 0.05) and an oxidized shell (4 nm, O/Fe = 1.38). The reactive membranes degraded 92% of target CAHs with a residence time of 1.7 seconds. After long-term treatment and regeneration, reusability was confirmed through recovered reactivity, recurrence of Fe0 in X-ray photoelectron spectroscopy, and >96% remaining of Fe and Pd. The total cost (adjusted present value for 20 years) was estimated to be 13.9% lower than the granular activated carbon system, following an EPA work breakdown structure-based cost model. However, non-target CAHs from groundwater can compete for active sites, leading to decreased surface-area normalized dechlorination rate (ksa) by 28.2-79.9%. A hybrid nanofiltration (NF)/reactive membrane was proposed to selectively intercept larger competitors, leading to 54% increased dechlorination efficiency and 1.3 to 1.9-fold enlarged ksa. Overall, the practical viability of the developed reactive membranes was demonstrated by the stability, reusability, and cost advantages, while the optional NF strategy could alleviate competitive degradation towards complex water chemistry.

4.
J Am Chem Soc ; 144(43): 20025-20034, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36264302

RESUMO

An enantiomerically enriched 3-hydroxymethyl pentenal unit is one of the key structural cores in plenty of natural products and drug candidates with significant biological activities. However, very few synthetic methodologies for the facile construction of the related skeletons have been reported to date. Herein, an elegant iridium-catalyzed asymmetric cascade allylation/retro-Claisen reaction of readily available ß-diketones with VEC was successfully developed, and a wide range of functionalized chiral 3-hydroxymethyl pentenal derivatives could be prepared in good yields with excellent enantioselectivities. Various 1,3-diketones and functionalized ketones containing different electron-withdrawing groups on the ß-position were well tolerated as outstanding partners with high reactivity and excellent regio-/chemo-/enantioselectivity. The synthetic utility of product chiral 3-hydroxymethyl pentenal derivatives was well shown through gram-scale transformation, hydrogenation, cyclopropanation, hydroboration, and olefin metathesis. Moreover, this elegant protocol demonstrated synthetic applications in the concise synthesis of synthetically useful chiral building block (S)-Taniguchi lactone and the formal synthesis of natural product cytisine. A rational reaction pathway was proposed based on the experimental results and control experiments.


Assuntos
Irídio , Cetonas , Irídio/química , Estereoisomerismo , Hidrogenação , Cetonas/química , Catálise
5.
iScience ; 19: 63-73, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31352194

RESUMO

Chiral cyclic sulfamidates are useful building blocks to construct compounds, such as chiral amines, with important applications. Often these compounds can only be generated through expensive precious metal catalysts. Here, Ni(OAc)2/(S, S)-Ph-BPE-catalyzed highly efficient asymmetric hydrogenation of cyclic sulfamidate imines was successfully developed, affording various chiral cyclic sulfamidates with high yields and excellent enantioselectivities (up to 99% yield, >99% enantiomeric excess [ee]). This Ni-catalyzed asymmetric hydrogenation on a gram scale has been achieved with only 0.1 mol% catalyst loading in 99% yield with 93% ee. Other types of N-sulfonyl ketimines were also hydrogenated well to obtain the corresponding products with >99% conversion, 96%-97% yields, and 97%->99% ee. In addition, this asymmetric methodology could produce other enantioenriched organic molecules, such as chiral ß-fluoroamine, amino ether, and phenylglycinol. Moreover, a reasonable catalytic cycle was provided according to the deuterium-labeling studies, which could reveal a possible mechanism for this Ni-catalyzed asymmetric hydrogenation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...